
Operator algebras: uniform Roe algebras of uniformly locally finite spaces

In this talk, we will introduce the uniform Roe algebras of uniform locally finite metric
spaces. We will discuss some examples of these algebras and examine their basic
properties. We conclude the series of talks with a brief introduction to the rigidity
problem of uniform Roe algebras.

3 Operator algebras: uniform Roe algebras of uniformly lo-
cally finite spaces

Recall from the first talk that a metric space (X, d) is uniformly locally finite (ulf for short) if for
every R ≥ 0 there exists a number N ∈ N such that for every x ∈ X one has

|BR(x)| ≤ N.

Concretely, ulf spaces are the metric spaces whose R-balls have a finite amount of elements in a
uniform way. Also recall that by Rieffel’s theorem, two unital (more generally σ-unital) C∗-algebras
are Morita-equivalent if and only if they are stabely isomorphic

A ∼Morita B ⇐⇒ A⊗K ∼= B ⊗K,

where K is the algebra of compact operators on a separable infinite dimensional Hilbert space. We
want to find an operator algebraic invariant of (bijective) coarse equivalences for uniformly locally
finite coarse spaces. Let us start with an example of finitely generated groups. When given a finitely
generated group, one of the first C∗-algebras that comes to mind is the reduced group C∗-algebra.

3.1 (Reduced group C∗-algebras). Let G be a finitely generated group, and let C∗
r (G) be the reduced

C∗-algebra of G, i.e. a C∗-algebra generated by unitaries

λg : ℓ
2(G) → ℓ2(G), λg(δh) = δgh, g, h ∈ G.

Note that the isomorphism class of C∗
r (G) is not a coarse invariant (for instance, all finite groups are

coarsely equivalent, but the reduced group C∗-algebras have different dimensions). It is not even
a bijective coarse invariant, since Z and D∞ (the infinite Dihedral group) are bijectively coarsely
equivalent (as they are biLipschitz equivalent), but C∗

r (Z) ∼= C(T) and C∗
r (D∞) is non-commutative.

Hence, to get a bijective coarse invariant, we have to modify the reduced group C∗-algebra.

Remark 3.2. One may check that C∗
r (D∞) is isomorphic to a C∗-subalgebra of C([0, 1])⊗M2(C)

given by functions that diagonalise on the ends of the interval. This isomorphism is induced by an
injective ∗-homomorphism

Φ : C∗
r (D∞) → C([0, 1])⊗M2(C), λu 󰀁→

󰀕
−1 0
0 1

󰀖
, λv 󰀁→

󰀕
1− 2x 2

󰁳
x(1− x)

2
󰁳
x(1− x) 2x− 1

󰀖

To see that Φ is well-defined note that since D∞ is amenable one has C∗(D∞) ∼= C∗
r (D∞), and since

D∞ ∼= Z/2Z ∗Z/2Z the C∗-algebra C∗
r (D∞) is a universal C∗-algebra generated by two unitaries of

order 2. Hence the ∗-homomorphism Φ is well-defined. One may also check that it is injective and
surjects onto the aforementioned subalgebra. Note that the K0-group of C(T) is isomorphic to Z,
since C(T) is the unitalization of C0(R), whose K0-group is zero. The K0-group of C∗

r (D∞) may be
computed as follows. Note that there is an exact sequence

0 → C0(R)⊗M2(C) → C∗
r (D∞) → C4 → 0

Hence, by the 6-term exact sequence in K-theory, one has the exactness of the following sequence

0 → K0(C
∗
r (D∞)) → Z4 → Z.

It follows that K0(D∞) cannot equal to Z. In particular, C∗
r (D∞) and C∗

r (Z) are not Morita
equivalent.

The first guess was not successful. One of the reasons for it is the fact that the reduced group
C∗-algebra tracks the commutativity of the underlying group. Let’s try something commutative.
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3.3 (Bounded functions). Let G be a finitely generated group, and let ℓ∞(G) be a C∗-algebra of all
bounded functions from G to C. We can represent ℓ∞(G) on ℓ2(G) by declaring

π(f)v = fv, v ∈ ℓ2(G), f ∈ ℓ∞(G).

It is easy to see that this representation is faithful (it has no kernel). Given two bijectively coarsely
equivalent groups G and H, we can define a unitary operator

Uf : l
2(G) → l2(H), δg 󰀁→ δf(g),

for every bijective coarse equivalence f . Note that the conjugation by Uf maps ℓ∞(G) to ℓ∞(H):

UfπG(g)U
∗
f (δh) = g(f−1(h))δh, g ∈ ℓ∞(G)

Hence every bijective coarse equivalence f : G → H induces a ∗-isomorphism AdUf
: ℓ∞(G) →

ℓ∞(H), and ℓ∞(G) is an invariant of bijective coarse equivalence.

Despite the fact that ℓ∞(G) is an invariant of bijective coarse equivalence, this invariant is not very
interesting. We didn’t use the metrics on G and H, so the same procedure can be done for any
bijection f : G → H.

Remark 3.4. One may ask whether a coarse equivalence induce f : G → H induce a Morita
equivalence between ℓ∞(G) and ℓ∞(H), and the answer is again negative. Consider G = Z/2Z and
H = Z/3Z, then

ℓ∞(G) = C2, ℓ∞(H) = C3,

hence by additivity of K0 we get that the respective K0-groups are Z2 and Z3.

To get a better invariant, we have to modify the algebra of bounded functions on G. It turns out
that the combination of the above two algebras provides a well-behaved invariant. It is, however,
easier to deal with more general spaces than with groups. Hence, we will first develop the general
theory, and then we will come back to the group case.
Suppose given a uniformly locally finite metric space (X, d). Consider a Hilbert space ℓ2(X) of
square summable functions from X to C. One can view operators on ℓ2(X) as X by X matrices via
the identification

T 󰀁→ [〈T δx, δy〉]x,y∈X ,

where δx is a delta-function at a point x. Note that not every X by X matrix defines a bounded
operator, for instance, if ax,y = δx0(x), for some point x0 ∈ X, then the matrix [ax,y]x,y∈X is not a
bounded operator. We will extract a certain concrete C∗-subalgebra of B(ℓ2(X)).

Definition 3.5 (Propagation). Let (X, d) be a ulf metric space, and T ∈ B(ℓ2(X)) be a bounded
operator. The propagation of T is the following quantity:

prop(T ) = sup{d(x, y) | x, y ∈ X; 〈T δx, δy〉 ∕= 0}.

A bounded operator T is said to have finite propagation if prop(T ) < ∞.

The propagation of an operator can be easily visualised. Consider, for example, a ulf space (Z, d),
where d is the Euclidean metric. Then, every bounded operator can be represented by an infinite
Z × Z matrix. One can think of it as an infinite Excel table with complex entries. Suppose that
prop(T ) = 0, then 〈T δn, δm〉 ∕= 0 if and only if n = m, hence the only nonzero entries of the table
are the diagonal ones. It follows that T ∈ ℓ∞(Z) (the same argument works for any ulf space X).
Suppose that prop(T ) ≤ N , then 〈T δn, δm〉 ∕= 0 if and only if d(n,m) ≤ N , hence the nonzero entries
of the table are located in a strip (tube) around the diagonal of radious N . This can be illustrated
by the following picture:
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– propagation 0

– propagation ≤ 1

– propagation ≤ 2

– propagation ≤ 3

Finally, we provide an example of an operator with infinite propagation. Consider an operator
T ∈ B(ℓ2(Z)) defined by

T δk =

󰀫
δ2k, if k is a power of 2;

0 otherwise.

By definition of propagation of has prop(T ) = supk |2k−k| = ∞. Hence, T has infinite propagation.
Moreover, for every finite propagation operator T ′ ∈ B(ℓ2(Z)) one has 󰀂T − T ′󰀂 > 1. Note that
operators of finite propagation need not form a closed subset of B(ℓ2(X)).

Definition 3.6 (The uniform Roe algebra). Let (X, d) be a ulf space. The uniform Roe algebra
C∗

u(X) is the closure of finite propagation operators in B(ℓ2(X)).

As we mentioned before, the diagonal operators ℓ∞(X) have propagation 0, therefore ℓ∞(X) ⊂
C∗

u(X). Moreover, since ℓ∞(X) is a maximal abelian subalgebra (MASA) in B(ℓ2(X)) it is a MASA
of C∗

u(X), and the canonical conditional expectation E : B(ℓ2(X)) → ℓ∞(X) restricts to a canonical
conditional expectiation on C∗

u(X). Note also that every operator T ∈ B(ℓ2(X)) of the form

Tx,yv = 〈v, δy〉 δx, x, y ∈ X

has finite propagation (since prop(Tx,y) = d(x, y) for all pints x and y), therefore the. closure of the
linear span of such operators is contained in C∗

u(X). Since the closure generates the C∗-algebra of
compact operators on ℓ2(X), we have the inclusion K(ℓ2(X)) ⊂ C∗

u(X).

3.7 (Uniform Roe algebra of a group). Let (G, d) be a finetely generated group with a right metric
induced from a Cayley graph of G. For g ∈ G note that

prop(λg) = sup{d(h, k) | 〈λgδh, δk〉 ∕= 0} = sup{d(h, gh) | h ∈ G} = γ(g) < ∞.

Hence, λg has finite propagation, and we have an inclusion C∗
r (G) ⊂ C∗

u(G).

As announced at the beginning, the combination of the two unsuccessful attempts leads to the
successful one. The following lemma makes this statement precise.

Lemma 3.8. The uniform Roe algebra of a finitely generated group equipped with a right invariant
metric from its Cayley graph is generated by ℓ∞(G) and C∗

r (G).

Proof. As mentioned above the union ℓ∞(G)∪C∗
r (G) is contained in C∗

u(G), therefore one
inclusion is established. For the second inclusion, consider a finite propagation operator
T ∈ B(ℓ2(G)), whose propagation is at most N . Then, all nonzero entries of the matrix
representation of T are located in the strip

EN = {(g, h) | γ(gh−1) ≤ N}.

Denote by Σ ⊂ G a finite set of all elements g ∈ G that satisfy γ(g) ≤ N , then one can
rewrite the definition of EN as follows

EN = {(g, h) | gh−1 ∈ Σ} =
󰁊

σ∈Σ

Eσ,
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where Eσ = {(g, h) | gh−1 = σ}. It follows that T can be decomposed as

T =
󰁛

σ∈Σ

aσλσ, aσ ∈ ℓ∞(G) for all σ ∈ Σ.

Hence, finite propagation operators are contained in the C∗-algebra generated by the
union ℓ∞(G) ∪ C∗

r (G). This finishes the proof.

Remark 3.9. One may prove that for a finitely generated group G the aforementioned C∗-algebra
C∗

u(G) is isomorphic to the reduced crossed product ℓ∞(G)⋊r G. Note that this C∗-algebra is not
separable when G is infinite, as ℓ∞(G) is not separable.

We are now to establish the fact that C∗
u(X) is an invariant under bijective coarse equivalences.

Suppose for two metric spaces (X, d), (Y, ∂) given a bijective coarse equivalence f : X → Y . Recall
the unitary Uf defined during the second unsuccessful attempt

Uf : ℓ
2(X) → ℓ2(Y ), δx 󰀁→ δf(x).

Now AdUf
: B(ℓ2(X)) → B(ℓ2(Y )) is a ∗-isomorphism, since f is a bijection. Moreover, for a finite

propagation operator T (say of propagation N), one has

prop(AdUf
(T )) = sup{∂(x, y) | 〈TU∗

f δx, U
∗
f δy〉 ∕= 0} = sup{∂(x, y) | d(f−1(x), f−1(y)) ≤ N} < ∞,

as f is expansive. Therefore AdUf
restricts to a map between the uniform Roe algebras of X and Y .

Its inverse is given by AdU−1
f

, and both of them are injective, henceforth AdUf
is a ∗-isomorphism

between the respective unifrom Roe algebras.

Corollary 3.10. The isomorphism class of the uniform Roe algebra is invariant under bijective
coarse equivalences.

One may prove that the Morita-equivalence class of the uniform Roe algebra is invariant under
coarse equivalences. The proof reassembles the one for bijective coarse equivalences but uses more
technical tools. Here are the main steps:

1. By the theorem of Rieffel, two unital C∗-algebras A,B are Morita-equivalent if and only if
they are stable isomorphic, i.e. A⊗K ∼= B ⊗K;

2. Represent the algebra C∗
u(X)⊗K on ℓ2(X)⊗ ℓ2(N) in the obvious way;

3. Recall that a coarse equivalence f : X → Y between ulf metric spaces (X, d) and (Y, ∂) is
uniformly finite-to-one, i.e. supy |f−1(y)| < ∞;

4. Assume f is surjective, and define the unitary Uf as follows:

(a) if |f−1(y)| = 1, then set Ufδf−1(y) ⊗ δn = δy ⊗ δn;

(b) if |f−1(y)| = N , split N into N copies of N, and let fk : N → N denote a bijection between
N and the k-th copy of N. Define Ufδxk

⊗ en = δy ⊗ efk(n), where f
−1(y) = {x1, . . . , xN}.

5. If f is not surjective, let f̃ : X → f(X) denote the corestriction of f . By coboundedness,
there exists a coarse retraction p : Y → f(X), which is a surjective coarse equivalence. Define
Uf = U∗

pUf̃ ;

6. One checks similarly that controlled propagation operators are mapped to control propagation
operators. Vise-versa one applies the same technics for AdU∗

f
;

Corollary 3.11. The Morita-equivalence class of uniform Roe algebra is invariant under coarse
equivalences.

Generally, there are many C∗-algebras one can associate with a metric space in a similar manner.
These algebras are called Roe algebras; the difference between these C∗-algebras is the choice of
the Hilbert space on which the potential algebra acts. This choice leads to significant differences in
properties that the algebras possess. For example, there are Roe algebras whose isomorphism class
is an invariant of coarse-equivalences.
The rigidity problem for uniform Roe algebras asks two questions converse to the above corrolaries:
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1. If the uniform Roe algebras of (X, d) and (Y, ∂) are Morita-equivalent, is it true that the
underlying spaces are coarsely equivalent?

2. If the uniform Roe algebras of (X, d) and (Y, ∂) are isomorphic, is it true that the underlying
spaces are bijectively coarsely equivalent?

These questions were asked by Jhon Roe to Ján Špakula and by Guoliang Yu to Rufus Willett
independently to understand better the failure of the coarse Baum–Connes conjecture.

Theorem 3.12 (Špakula, Willett). For two metric spaces (X, d) and (Y, ∂) that satisfy property A
the following holds:

1. If C∗
u(X) ∼= C∗

u(Y ), then (X, d) and (Y, ∂) are bijectively coarsely equivalent;

2. If C∗
u(X) ∼Morita C∗

u(Y ), then (X, d) and (Y, ∂) are coarsely equivalent;

To prove such a theorem, one should first note that any ∗-isomorphism (stable ∗-isomorphism)
φ between unifrom Roe algebras is spatially implemented (i.e. for some unitary U between the
respective Hilbert spaces one has φ = AdU ). Then, one may consider the following subset of Y ×X:

fδ = {(y, x) | | 〈Uδx, δy〉 | > δ}, δ > 0.

It can be proven that for a carefully picked δ, the set fδ is a map and a coarse equivalence. We will
only sketch the proof that any ∗-isomorphism is spatially implemented.

Lemma 3.13. Let (X, d) and (Y, ∂) be metric spaces, φ : C∗
u(X) → C∗

u(Y ) be a ∗-isomorphism,
then φ is spatially implemented by some unitary U : ℓ2(X) → ℓ2(Y ).

Sketch of proof. Note that the C∗-subalgebra of compact operators on ℓ2(X) is the
unique minimal ideal of C∗

u(X). Indeed, it is an ideal in B(ℓ2(X)), hence it is an ideal
in C∗

u(X). If J is another ideal in C∗
u(X), then J ∩ K(ℓ2(X)) is an ideal in C∗

u(X)
and an ideal in K(ℓ2(X)), but K(ℓ2(X)) is simple. Therefore either J ⊃ K(ℓ2(X)), or
J∩K(ℓ2(X)) = {0}. If the second option holds, then aJ = 0, for every finite-dimensional
operator in B(ℓ2(X)), hence J = {0}. Since φ is a ∗-isomorphism it restricts to a ∗-
isomorphism between the unique minimal ideals of C∗

u(X) and C∗
u(Y ), hence it restricts

to a ∗-isomorphism φ : K(ℓ2(X)) → K(ℓ2(Y )). Any such ∗-isomorphism is implemented
by a unitary U : ℓ2(X) → ℓ2(Y ) (as it is just a change of the basis). It remains to prove
that φ = AdU on the whole algebra. This is done by showing that φ viewed as a map

φ : {T ∈ C∗
u(X) | prop(T ) ≤ R} → B(ℓ2(Y ))

is SOT-continious. As K(ℓ2(X)) is SOT-dense in B(ℓ2(X)) it follows that φ conincides
with AdU on all finite propagation operators. Hence, φ is equal to AdU as finite propa-
gation operators are norm-closed.

Property A is crucial for the proof of Theorem 3.12, and it was an open problem whether the rigidity
phenomena holds in general. As Alessandro told me, the following theorem was proven during the
COVID-19 lockdown via Zoom.

Theorem 3.14 (Baudier, Braga, Farah, Khukhro, Vignati, Willett, 2022). Let (X, d) and (Y, ∂) be
uniformly locally finite spaces, then (X, d) and (Y, ∂) are coarsely equivalent if and only if C∗

u(X)
and C∗

u(Y ) are Morita-equivalent.

In particular, the Morita-equivalence class of the uniform Roe algebra is a complete invariant of
coarse equivalences. The question of whether having ∗-isomorphic Roe algebras implies being bi-
jectively coarsely equivalent remains open. It is proven that the rigidity phenomena holds in the
following cases:

1. At least one of the spaces has property A;

2. At least one of the spaces is nonamenable;

3. Both spaces are expander graphs.

Recall that all amenable groups have property A; therefore, the rigidity problem for groups is
completely solved.
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Corollary 3.15. Let G and H be finitely generated groups endowed with right invariant metrics
from their Cayley graphs. Then

1. G and H are quasi-isometric if and only if their Roe algebras are Morita-equivalent;

2. G and H are biLipschitz equivalent if and only if their uniform Roe algebras are isomorphic.

Thank you for your attention!
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